当前位置:
首页
文章
后端
详情

深入了解神经网络

深入了解神经网络 本章将介绍用于解决实际问题的深度学习架构的不同模块。前一章使用PyTorch的低级操作构建了如网络架构、损失函数和优化器这些模块。本章将介绍用于解决真实问题的神经网络的一些重要组件,以及PyTorch如何通过提供大量高级函数来抽象出复杂度。本章还将介绍用于解决真实问题的算法,如回归、二分类、多类别分类等。 本章将讨论如下主题: 详解神经网络的不同构成组件; 探究PyTorch中用于构建深度学习架构的高级功能; 应用深度学习解决实际的图像分类问题。 3.1 详解神经网络的组成部分 上一章已经介绍了训练深度学习算法需要的几个步骤。 1.构建数据管道。 2.构建网络架构。 3.使用损失函数评估架构。 4.使用优化算法优化网络架构的权重。 上一章中的网络由使用PyTorch数值运算构建的简单线性模型组成。尽管使用数值运算为玩具性质的问题搭建神经架构很简单,但当需要构建解决不同领域的复杂问题时,如计算机视觉和自然语言处理,构建一个架构就迅速变得复杂起来。大多数深度学习框架,如PyTorch、TensorFlow和Apache MXNet,都提供了抽象出很多复杂度的高级功能。这些深度学习框架的高级功能称为层(layer)。它们接收输入数据,进行如同在前面一章看到的各种变换,并输出数据。解决真实问题的深度学习架构通常由1~150个层组成,有时甚至更多。抽象出低层的运算并训练深度学习算法的过程如图3.1所示。 深入了解神经网络 图3.1 3.1.1 层——神经网络的基本组成 在本章的剩余部分,我们会见到各种不同类型的层。首先,先了解其中最重要的一种层:线性层,它就是我们前面讲过的网络层结构。线性层应用了线性变换: Y=Wx+b 线性层之所以强大,是因为前一章所讲的功能都可以写成单一的代码行,如下所示。 上述代码中的myLayer层,接受大小为10的张量作为输入,并在应用线性变换后输出一个大小为5的张量。下面是一个简单例子的实现: 可以使用属性weights和bias访问层的可训练参数: 线性层在不同的框架中使用的名称有所不同,有的称为dense层,有的称为全连接层(fully connected layer)。用于解决真实问题的深度学习架构通常包含不止一个层。在PyTorch中,可以用多种方式实现。 一个简单的方法是把一层的输出传入给另一层: 每一层都有自己的学习参数,在多个层的架构中,每层都学习出它本层一定的模式,其后的层将基于前一层学习出的模式构建。把线性层简单堆叠在一起是有问题的,因为它们不能学习到简单线性表示以外的新东西。我们通过一个简单的例子看一下,为什么把线性层堆叠在一起的做法并不合理。 假设有具有如下权重的两个线性层: 层 权重 Layer1 3.0 Layer2 2.0 以上包含两个不同层的架构可以简单表示为带有另一不同层的单层。因此,只是堆叠多个线性层并不能帮助我们的算法学习任何新东西。有时,这可能不太容易理解,我们可以用下面的数学公式对架构进行可视化: Y = 2(3X1) -2 Linear layers Y = 6(X1) -1 Linear layers 为解决这一问题,相较于只是专注于线性关系,我们可以使用不同的非线性函数,帮助学习不同的关系。 深度学习中有很多不同的非线性函数。PyTorch以层的形式提供了这些非线性功能,因为可以采用线性层中相同的方式使用它们。 一些流行的非线性函数如下所示: sigmoid tanh ReLU Leaky ReLU 3.1.2 非线性激活函数 非线性激活函数是获取输入,并对其应用数学变换从而生成输出的函数。我们在实战中可能遇到数个非线性操作。下面会讲解其中几个常用的非线性激活函数。 1.sigmoid sigmoid激活函数的数学定义很简单,如下: 深入了解神经网络 简单来说,sigmoid函数以实数作为输入,并以一个0到1之间的数值作为输出。对于一个极大的负值,它返回的值接近于0,而对于一个极大的正值,它返回的值接近于1。图3.2所示为sigmoid函数不同的输出。 深入了解神经网络 图3.2 sigmoid函数曾一度被不同的架构使用,但由于存在一个主要弊端,因此最近已经不太常用了。当sigmoid函数的输出值接近于0或1时,sigmoid函数前一层的梯度接近于0,由于前一层的学习参数的梯度接近于0,使得权重不能经常调整,从而产生了无效神经元。 2.tanh 非线性函数tanh将实数值输出为-1到1之间的值。当tanh的输出极值接近-1和1时,也面临梯度饱和的问题。不过,因为tanh的输出是以0为中心的,所以比sigmoid更受偏爱,如图3.3所示。 深入了解神经网络 图3.3 3.ReLU 近年来ReLU变得很受欢迎,我们几乎可以在任意的现代架构中找到ReLU或其某一变体的身影。它的数学公式很简单: f(x)=max(0,x) 简单来说,ReLU把所有负值取作0,正值保持不变。可以对ReLU函数进行可视化,如图3.4所示。 深入了解神经网络 图3.4 使用ReLU函数的一些好处和弊端如下。 有助于优化器更快地找到正确的权重集合。从技术上讲,它使随机梯度下降收敛得更快。 计算成本低,因为只是判断了阈值,并未计算任何类似于sigmoid或tangent函数计算的内容。 ReLU有一个缺点,即当一个很大的梯度进行反向传播时,流经的神经元经常会变得无效,这些神经元称为无效神经元,可以通过谨慎选择学习率来控制。我们将在第4章中讨论调整学习率的不同方式时,了解如何选择学习率。 4.Leaky ReLU Leaky ReLU尝试解决一个问题死角,它不再将饱和度置为0,而是设为一个非常小的数值,如0.001。对某些用例,这一激活函数提供了相较于其他激活函数更优异的性能,但它不是连续的。

深入了解神经网络

免责申明:本站发布的内容(图片、视频和文字)以转载和分享为主,文章观点不代表本站立场,如涉及侵权请联系站长邮箱:xbc-online@qq.com进行反馈,一经查实,将立刻删除涉嫌侵权内容。

同类热门文章

深入了解C++中的new操作符:使用具体实例学习

C++中的new操作符是动态分配内存的主要手段之一。在程序运行时,我们可能需要动态地创建和销毁对象,而new就是为此提供了便利。但是,使用new也常常会引发一些问题,如内存泄漏、空指针等等。因此,本文将通过具体的示例,深入介绍C++中的new操作符,帮助读者更好地掌握其使用。


深入了解C++中的new操作符:使用具体实例学习

怎么用Java反射获取包下所有类? 详细代码实例操作

Java的反射机制就是在运行状态下,对于任何一个类,它能知道这个类的所有属性和方法;对于任何一个对象,都能调用这个对象的任意一个方法。本篇文章将通过具体的代码示例,展示如何通过Java反射来获取包下的所有类。


怎么用Java反射获取包下所有类? 详细代码实例操作

员工线上学习考试系统

有点播,直播,在线支付,三级分销等功能,可以对学员学习情况的监督监控,有源码,可二次开发。支持外网和局域网私有化部署,经过测试源码完整可用!1、视频点播:视频播放,图文资料,课件下载,章节试学,限时免

员工线上学习考试系统

了解Java中的volati关键字的作用 以及具体使用方法

本篇文章将和大家分享一下Java当中的volatile关键字,下面将为各位小伙伴讲述volatile关键字的作用以及它的具体使用方法。


了解Java中的volati关键字的作用 以及具体使用方法

Java Map 所有的值转为String类型

可以使用 Java 8 中的 Map.replaceAll() 方法将所有的值转为 String 类型: 上面的代码会将 map 中所有的值都转为 String 类型。 HashMap 是 Java

Java Map 所有的值转为String类型